Header Ads

Signals and Systems MCQ


Signals and Systems-

EE_GATE_2020_05 

Signals and Systems-

Subject No.of Sections Total Marks 

Duration Start Time End Time 

45 mins 08-05-2019 14:00:00 15-02-2020 23:59:00 25 


One Mark Questions 

Section 

Total Questions :

Max Marks :

What are the frequencies (in Hertz) present in the signal x(t) = cos(2t)sin(4t

(C)2,

(D) Cant determined 

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

Given x(t) = cos(2t)sin(4t) x(t) = 0.5 sin(6t) + 0.5 sin(2t

So, the frequencies present in the x(t) are – 

2 H

2721 

Consider the following input output equation y(n) = 2x(n-1) + x(n-3). The impulse response for above system is 

(A) Having finite support and stable (B) Having infinite support and stable (C) Having finite support and unstable (D) Having infinite support and unstable 

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

y(n)=2x(n 1) + x(n-3) Impulse response is given by 

h(n) = 2 (n-1) + 8(n-3

h(1

0 1 2 3 Width of h(n) is finite Hence, h(n) is of finite support 

Ž h(n) = finite 

f1=-00 

Hence h(n) is stable 

3

بر ارا

Let the impulse response of one system is given as h, (n)={1 -1, 1), find another system h (n) which is connected in parallel to hi(n) make whole system memory less is 

(A) h2(n) = {2, -1, 1

(B) h (n) = {0, 2, -1

(C) h (n) = {0,1,-1

(D) h2(n)= {2, -2,2

Correct Answer:

Not Attempted:

Hide Solution 

on 

Video Solution 

Sol Challenge 

We know that for memory less system overall impulse response is (n) If two systems are connected in parallel, then overall impulse response 

h(n)=h;(n) +h2(n) By eliminating option if we take option

h(n)= {1,-1, 1} + {0, 1,-1} h(n)={1,0,0} = (n

The Impulse response of LTI system is given as h(n) = eu(n)+ etu(-n). This system is stable if 

(A) a is positive and B is positive (B) a is positive and B is negative (C)a is negative and B is positive (D) a is negative and B is negative 

Correct Answer:

Not Attempted:

Hide Solution 

O Sol Challenge 

fl=-00 

A system is stable if į b[n)<o Since h(n)=e**u(n)+ePu(-n) ŠHON=%e* + %

fl

fl=

n=-00 

0 >

Hence for u(n) is existed between

and u(-n) is existed between -o Hence a <0 and B > 0 Hence (c) option is correct 

5

A continuous time periodic signal x(t) is real valued and has a fundamental period T = 8 and Exponential Fourier Series Coefficients are X1 = X 1 = 2; X3 = X* = 4j, then the signal x(t) is 

(A) 4 cos * + esin 

(B) 4 cos * 8 sin 31 

(C) - 4 cos TT + 8 sin 31 

(D) 4 cos *t - 8 sin 31 

Correct Answer:

Not Attempted:

Hide Solution 

Video Solutio

Sol Challenge 

Exponential Fourier Series Expansion of x(t) is x(t)

ej2anfot 

f=00 

j2rnfot 

N=-1,-

x(0)= x, eins ={sie * * * 2*)+(xsef x se

CD 

= 4com)+(-8)sin() ::$(t)= 4co(1) - ssin( 31

Two Marks Questions 

Section 

Total Questions : 10 

Max Marks : 20 

6

Let the signal x(t) is given by 

X(t

نيا 

Let y(t) is Even part of x(t), then the energy of y(t) is

Correct Answer:

Answer Range: (4,4

Not Attempted:

Hide Solution 

O Sol Challenge 

y(t) =Even part of X(t) =

_ x(t)+x(-t

X(-1

-37-it 

Hence, y(t)= X(t)+x(-t

y(1

y(t

2/

-

- 2/

-2/

Energy of y(t) is Eye 

Exo = faydt + $(1°dt + ${19 dt = fata 

-

= 1+1+1+

Ey(t) = 4J 

Let the impulse response of one system is shown in figure 

hi(t

-

The impulse response of another system is hz(t) = 8(t-1) + 8(t-2) + 8(t-3). These two are cascaded. Then the over all impulse response is 1. Causal 2. Stable 

(A) Both 1, and 2 are not correct (B) Only 1 is correct (C) Only 2 is correct (D) Both 1 and 2 are correct 

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

Since, h(t) = hi(t)*h2(t

h(t) = [8(t-1) + 8(t - 2) + 6(t-3)]*hj(t) h(t) = hı(t-1) +h(t-2) +h(t-3

hi(t-1

hi(t-2

hi(t-3

After addition 

h(t

--

--

--

-

(a) Since h(t) is 0 for t<0, h(t) is causal 

(b) Since I In ft Ydt

So it is stable 

ja 

--

Consider two systems with following Input output equation System-1: y(n) = x(n+3) - x(n) System-2: y(n)=x(n+2)-2x(n - 1) The overall impulse response of cascaded system has existence from Ni SnS N2, then the value of N1 + N2 is 

Correct Answer: -

Answer Range: (-4,-4

Not Attempted :

Hide Solution 

Sol Challenge 

For system-

yı(n)= x(n+3) x(n) Hence impulse response 

ht(n)= S(n+ 3)-6(n) For system-

ya(n) = x(n + 2)-2x(n-1

hy(n)= 8(n + 2)-28(n-1) Let both system are cascaded 

h(n)=h(1)*h2(n) where h(n) is over all impulse response 

:: h(n) = [8(n+2) 28(n-1)]*[8(n+3) - 6(n)] We know that 8(n + a)* 8(n + B) = 8(n +a+B) .: h(n) = 8(n + 2)*8(n + 3) - 8(n + 2)*8(n) - 28(n 1)*8(n + 3) + 28(n-1)*(n

h(n) = (n +5) - 8(n + 2) - 28(n + 2) +26(n-1) = (n + 5) - 36(n +2)+28(n-1

h(n)= {1,0,0,-3,0,0.2

Hence Existence of above h(n) is -5 $nsi 

N=-5, N2 =

N1 + N2 =-

Consider an LTI system with input and output related through the equation 

y(t)= 1 et-t)x(t 4 )dt 

Let the impulse response of above system is cascaded with another system having impulse response 8(t - 4). The overall impulse response system is 

(A) h(t) = e(t - 4) u(t-4

(B) h(t)= (-1) u(t-4

(C) h(t) = e-t-8) u(t-8

(D) h(t) =-et-3) (-t-3

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

vlt)- Te-t-)s(-Aldo 

19-

If x(t) = 8(t), then y(t) =h(t

h(t) je 4-1647 4)dt 

:h(t) = e(t - 4) u(t-4) When this system is cascaded with another system hz(t

h;(t)

hg(t)

h(t) = hi(t)*hz(t) ..h(t) = e(t - 4) ust-4)*8 (t-4) We know that X(t + a) * 8(t +B

= x(t+a+B) h(t) = e-t-4 - 4) u(t - 4 - 4) h(t) = e(t - 8) ust-8

10

If x(t) = =+3cos(2#t)+ 4 sin(167t). Then power content in 5th and 8th 

harmonics are P1, P2 respectively. Then the value of Pi + P2 is 

Watts 

Correct Answer:

Answer Range: (8,8

Not Attempted :

Hide Solution 

Sol Challenge 

x(t) = 1 + 3 cos(20)+4sin(1671) (1) 7: = 27. 1.

L.C.M(1.1)

===1sec H.C.F(1,8)

=f, = = = 1sec 

(3): 2info=21 2nfo=167 

27.n.1=27 27.1=16A 

n=

n=

..a1=

be=

Power content in gth harmonic = { b3 = * 4

er cont 

-X44 

00 

P2 = 8 watts Power content in 5th harmonic P1 = 0 watts P1 + P2 = 8 Watts 

11

il >

Let x(t) be a signal whose Fourier transform is shown in figure 

X(1

2

Then the Magnitude spectrum of y(t) = txt

|Y(f

Y(f

Y(f

Y(1

-

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

y(t)=txt) According to frequency differentiation property 

-j tx(t) > x(@) :: tx(0) *>jxm

|Y(

12

The inverse Fourier transform of X(0)=e 2 is 

(C) HIFT

Correct Answer:

Not Attempted:

Hide Solution 

Video Solution 

Sol Challenge 

Put a = 1/

Apply duality property 

To(1+4+

13

The magnitude and phase spectrum of a signal x(t) is as shown below. The value of x(t) at t = 2 sec is 

f|X(0

X00

EN 

NA 

BN 

Correct Answer: 0.955 

Answer Range: (0.9, 1

Not Attempted:

Hide Solution 

Sol Challenge 

X(0)= X(O). ej_X(6

Inverse 

lier Iri 

X(m) = 3 2142; 5*50so 

=3 43*2; 0505 X(m)= 3; ; ; soso 

=-3j; 0 50 51 Inverse Fourier Transform is x()= x(o)"des x1 = - Lj Biomaot | x-je-drs] 20-802, 0) x) = 2 ( - - )-em-1

/27 

of 

210 - A[2201

x() 2 = 3 (2+1) = * = 0.955 

14

il >

A periodic signal x(t) of period To is given by 

1; tkd 0; datKT,/

X(t)

The d.c. component of x(t) is

(A) d/T

(B) d/2T 

(C) 20/T

(D)T

Correct Answer:

Not Attempted:

Hide Solution 

Sol Challenge 

To 

-d od 

T

1 tatlo 

. 2d 

20=To \x{t)dt =T, dt = To 

15

The convolution of sinc(t) with sinc-(t/2) is 

il >

(A) sinct 

(B) sinc?(t/2

(C) sinc (t

(D) sinc (t/2

Correct Answer:

Not Attempted :

Hide Solution 

Sol Challenge 

Arect ^ <>AT sin c(FT

rect (t) sinc(t

sinc(1) rect(f

Atri() -AT sine°(ET) Tri(20) *sinc () sine ( ) <> Thi(2

i(2

X(t)=sin c(t),y(t

x(t) * y(t) + X(f). Y(f

= rect(f). 2Tri(21) = 2 Tri(21

x(0) * ¥€) = sinco (


Post a Comment

0 Comments